Aggregate Analyses by Light Scattering -**Complementary and Orthogonal**

Sigrid Kuebler, Ph.D, Dan Some, Ph.D, and Jeff Ahlgren, Ph.D. — Wyatt Technology

		Introduction		
Abstract: Biotherapeutic regulatory filings require detailed characterization of degradation pathways including aggregation. Three orthogonal light scattering techniques complement each other to analyze and quantify soluble and sub-micron insoluble aggregates: SEC-MALS, FFF-MALS and CG- MALS. This poster describes the capabilities of each technique and how they work together to provide a comprehensive picture of irreversible and reversible aggregates.	Technique	SEC-MALS	FFF-MALS	CG-MALS
	Separation size range	0.5 – 20 nm (column dependent)	1 nm – 1 µm	none
	Properties determined	Quantitative distributions of absolute MW and size (R_{g}, R_{h})	Quantitative distributions of absolute MW and size (R_{g}, R_{h})	Average MW and size; $A_2(B_{22})$, self / hetero-association K_d , co-solute interaction A_{11}
	Resolution	Proteins, fragments, small aggregates (column dependent)	Proteins, fragments, soluble and non-soluble aggregates	Stoichiometry and association properties of reversible aggregates and complexes
	Separation matrix	Column (high surface area)	Open channel or hollow fiber (low surface area)	none
	Change in concentration	Sample dilution	Concentrates samples during focusing step; dilutes after elution	none

SEC-MALS: absolute molar mass of proteins, oligomers and fragments

- Any leading HPLC-SEC for separation and UV detection
- High-performance WTC-030S5 • SEC column
- DAWN[®] or miniDAWN[®] MALS \bullet detector
- Optilab[®] RI detector \bullet

FFF-MALS: quantify soluble and insoluble aggregates

- Eclipse® FFF + HPLC for separation and UV detection
- DAWN[®] or miniDAWN[®] MALS detector
- Optilab[®] RI detector

Lot-to-lot comparability and SEC-MALS validation

- Automated CG-MALS measurements:
- Validate overall SEC-MALS or FFF-MALS $M_{\rm w}$ to determine if aggregates have been filtered out or disrupted.
- Identify reversible aggregates at actual formulation concentrations
- Compare lots in terms of weight-average molar mass and proteinprotein interactions (A_2 / B_{22}) .
- Highlight differences in A_2 that indicate changes in surface residues (e.g. deamidation) or higher-order structural shifts.

complementary techniques identifies aggregate properties and behavior.

FFF-MALS with an Eclipse and DAWN provides:

- Orthogonal approach to SEC-MALS for characterizing biopharmaceuticals.
- A wider range of separation than SEC with no shear, less dilution and little surface interactions
- Characterization of analytes too large for SEC: protein-polysaccharide conjugate vaccines, lipoproteins, liposomes, viruses and virus-like particles.

• Characterization of conjugates such as PEGylated or glycosylated proteins

CG-MALS with a Calypso and DAWN provides:

- Indication of aggregate loss in SEC or FFF
- Measures of protein-protein interactions including self-association and co-solute interactions
- A quick, simple way to compare lots