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First principle electrophoretic techniques Monoclonal Antibody charge  
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We have examined the electrophoretic mobility μ, zeta-potential  and effective charge  of a monoclonal antibody, mAb C, and made a comparative study of protein solution analytical methods and instrumentation that measure electrophoretic mobility such 

as: Wyatt Möbiu, Malvern Zetasizer Nano ZS, Spin Analytical MCE (membrane confined electrophoresis) and Beckman P/ACE MDQ CE (capillary electrophoresis). Due to volume restrictions associated with sub-cutaneous injections, it is desirable to 

administer highly concentrated monoclonal antibody solutions. In order to formulate drugs that contain high concentrated solutions of IgG proteins, it is important to understand and be able to predict their colloidal properties in the formulation buffer. The 

in-vivo analysis depicts the electrostatic driven interactions within and between the protein molecules that explain their affinity, specificity, solubility and stability. The most abundant antibody molecule in the plasma is the immunoglobulin γ-IgG 

molecule. In 1937, Arne Tiselius pioneered the world of electrophoresis and showed that in the blood serum that γ-IgGs, are the slowest moving proteins. A monoclonal antibody (mAb) is an engineered monospecific antibody that mimics a naturally 

produced human antibody. In blood plasma IgGs are weakly anionic at physiological pH, their apparent charge is low and it gives rise to a low electrophoretic mobility and by behaving like that IgGs solutions show poor solubility, gel formation and have 

high viscosity.  Since charge-charge repulsion between mAb molecules is important for solubility, the charge on mAbs needs to be determined as part of the formulation development.  

Analytical Technique Mobility  

(μm*cm/V *s) 

Zeff ZDHH 

MCE Mobility 0.164 1.07 3.24 

MCE Steady state 0.158 1.03 3.12 

Mobiu   0.16 1.04 3.16 

Zetasizer   0.305 2 6.02 

CE constant current 0.226 1.46 4.39 

Calculated values from the amino 

acid sequence 

2.14 13.87 41 

• PALS gives the electrophoretic mobility μE 

as the migration velocity per unit electric field  

• Derives protein’s electrophoretic 

parameters: 

• Effective charge Z*e 

• Zeta potential  

• Isoelectric point  

• Möbiu capabilities 

• Sensitivity: 1mg/mL Lysozyme (14 Kda), 

particle size: 1-1000 nm 

• Temperature range: 4 – 70 C 

• No practical limit to the mobility measurement 

• Low sample volume: ~170L 

1) Dynamic Light Scattering 
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• Steady State electrophoresis (SSE) measures 

the electrophoretic mobility μE at steady state 

from the concentration gradient c(x)  

• Real-time Mobility electrophoresis (REM) uses 

the velocity of the concentration boundary to 

determine electrophoretic  mobility μE 

• Direct measurement of protein’s e effective 

charge Z*e 

• MCE capabilities 

• Accuracy: “the gold standard for charge 

measurement” 

• Speed: fast REM and slow SSE  

• Wide salt concentration: 5-500 mM 

• Very low sample volume: ~20L 

2) Membrane Confined Electrophoresis  
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Conclusions:  
• It is not clear why the actual valences are so much less than the predicted 
values from the amino acid sequence. There are several publications and prior 
observations that show the measured IgG’s charge to have large deviations from 
the expected charge 
• Due to their strengths and limitations, the methods presented in this poster are 
complementary 
• Dynamic light scattering, capillary and membrane confine electrophoresis 
techniques give same data for a monoclonal antibody in 100 mM NaCl 10 mM Tris 
buffer at pH 7.5 
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