Characterizing Dendrimers by Asymmetric Flow Field Flow Fractionation

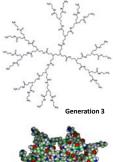
Sigrid C. Kuebler, Aym M. Berges, Vivianna C. Lim, Wyatt Technology Corporation, 6300 Hollister Ave, Santa Barbara, CA 93117

Why look at Dendrimers?

- Dendrimers have a high degree of molecular uniformity, narrow molar weight distribution, and specific size and shape (theoretically).
- Highly functionalized surface (-NH2, -OH,...) for covalent conjugation.
- Dendrimers are used as controlled drug delivery vehicles.
- Conjugation with DNA for in-vitro gene transfection by electrostatic interactions.
- Low cytotoxicity due to their size.

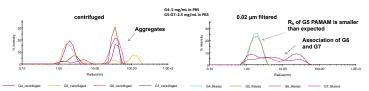
Why light scattering?

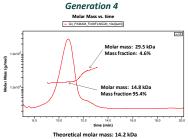
- Measure absolute molar mass and size (rms radius, hydrodynamic radius) in solution.
- Can be easily combined with Size Exclusion Chromatography (SEC) or Field Flow Fractionation (FFF) separation methods.
- Determine fragments, aggregates, and stoichiometry of complexes.

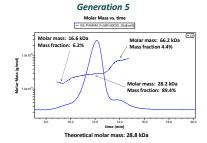

Why use FFF as a separation method?

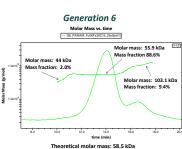
- FFF does not have a stationary phase, gentle separation method.
- Separation of small molecules and large aggregates in one experiment.
- SEC requires high salt concentration and low pH when characterizing PAMAM dendrimers to prevent interaction with stationary phase. Typical mobile phases are 0.5 M NaNO3 + 0.6 M HOAc at pH 2.7.
- · Use PBS as elution buffer in FFF.

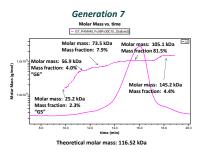
Ethylenediamine-core poly(amidoamine) (PAMAM) Dendrimers


Generation	Molecular Weight	Measured Diameter (Å)	Surface Groups
0	517	15	4
1	1,430	22	8
2	3,256	29	16
3	6,909	36	32
4	14,215	45	64
5	28,826	54	128
6	58,048	67	256
7	116,493	81	512
8	233,383	97	specifications
9	467,162	not to be used as	2048
10 Theore	tical Broperties	97 5, not to he used as	4096

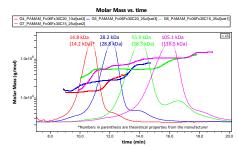

AF4 Experimental Conditions

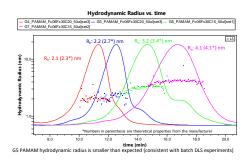

- 5kDa regenerated cellulose membrane, long channel
- Eclipse Dualtec with Heleos II + TrEX, QELS on detector 16
- Eluent: PBS (50 mM phosphate, 50 mM NaCl)
- Channel flow 0.6 mL/min, constant cross flow of 3.0 mL/min for 20 min
- Sample concentration: 5 mg/mL for G4 PAMAM, 2.5 mg/mL for G5-G7 PAMAM

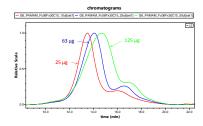

Batch DLS Measurements

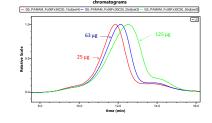


Fractograms of G4-G7 PAMAM








Fractogram Overlay of G4-G7

Variation of Injection Amounts for G5 and G6

Summary

- PAMAM Dendrimers and their fragments and aggregates can be readily separated by FFF.
- Molar mass distributions by FFF-MALS of a G4-G7 amine terminated PAMAM series shows increasing amount of fragments and aggregates for higher dendrimers.
- Higher generations have a lower molar mass than expected, probably due to defects (incomplete polymerization reaction).
- Hydrodynamic radii measured by are close to their expected values, batch DLS reveals the presence of aggregates and association for higher species.